
workshops.de

Workshop
 Angular Subjects

workshops.de

Angular Subjects

workshops.de

Helps to manage the state of your application

workshops.de

￫ Unidirectional data flow

￫ Predictable state changes and rendering

￫ Helping you application to be more “reactive”

Why?

workshops.de

This is how we
manage state at the
moment:

@Input()
@Output()

Why?

workshops.de

￫ Subjects are Observables but also Observers themselves

￫ Components can subscribe to Subjects

￫ Subjects can emit data too

State management with Subjects

workshops.de

State management with Subjects

Service with Subject

Everything is
dispatched from
and to one global
store

workshops.de

<code>Creating a Subject

let subject = new Subject<string>();

// We subscribe to the subject
subject.subscribe((data) => {
 console.log(`Hello ${data}`)
});

subject.next(‘Angular’);
// Hello Angular

workshops.de

Task
Create a HeaderService with a
Subject

workshops.de

<code>Subjects are multicast

let subject = new Subject<string>();
subject.subscribe((data) => {
 console.log(`Subscriber 1 received ${data}`);
});

subject.subscribe((data) => {
 console.log(`Subscriber 2 received ${data}`);
});

subject.next(‘Hello Angular’);

// Subscriber 1 received Hello Angular
// Subscriber 2 received Hello Angular

workshops.de

￫ Subscribers will be able to “mess up” with your Subjects

￫ Return an Observable:

private subject = new Subject<string>();

observable$ = this.subject.asObservable();

Don’t expose Subjects directly !!!

workshops.de

Task
Change Headertitle on Navigation

workshops.de

￫ We need to unsubscribe of all Subscriptions (otherwise we might geht

memory leaks)

￫ But that can get really messy:

subsription1 = observable1$.subscribe((data) => {});
subsription2 = observable2$.subscribe((data) => {});
subsription3 = observable3$.subscribe((data) => {});
subsription4 = observable4$.subscribe((data) => {});

//ngOnDestroy:
subsription1.unsubscribe()
subsription2.unsubscribe()
subsription3.unsubscribe()
subsription4.unsubscribe()

Using Subjects to unsubscribe

workshops.de

<code>Using Subjects to unsubscribe

let destroy$ = new Subject<boolean>();

this.apiService.getObservable().pipe(
takeUntil(this.destroy$)

)
.subscribe((data) => {
 ...
});

ngOnDestroy() {
this.destroy$.next(true)

}

workshops.de

Task
Use takeUntil()-Pattern

workshops.de

￫ A simple subject is not keeping the state

￫ Subscribers of subjects after value was emitted are not getting it

Other Subjects?

workshops.de

￫ BehaviourSubject always stores the last emitted Value

￫ It needs a default Value to

private behaviourSubject = new BehaviourSubject<string>(‘default’);

BehaviourSubject

workshops.de

￫ ReplaySubjects always stores the last emitted Values

￫ It needs the amount of Values it should store

private replaySubject = new ReplaySubject<string>(11);

ReplaySubject

